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Random Variable

Definition

A random variable is a real-valued function for which domain is a
sample space

Example
For a coin toss, the possible outcome is head or tail. The
number of heads appearing in one fair coin toss can be
described using the following random variable:

X =

{
1, if head
0, if tail

with probability function given by:

P(X = x) =


1
2 , if x = 1
1
2 , if x = 0
0, otherwise
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Probability Distribution

Definition

If X is discrete random variable, the function given by P(X = x)
for each x within the range of X is called probability distribution of
X .

Example
Let the random variable X be denoted as the total number of
heads. The probability distribution of heads obtained in the
four tosses of a fair coin can be written as follows:

P(X = x) =

(4
x

)
24
, for x = 0, 1, 2, 3, 4.
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Probability Density Distribution

Definition

A function with values f (x), defined over the set of all real
numbers, is called a probability density function of the continuous
random variable X if and only if

P(a ≤ X ≤ b) =

∫ b

a
f (x)dx ,

for any real constants a and b with a ≤ b

Example
The p.d.f of normal distribution is defined as follows:

f (x) =
1

σ
√

2π
e−

1
2
( x−µ

σ
)2 ,

where µ is the mean and σ is the standard deviation.
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Conditional Probability

Definition

The conditional probability of an event A, given that an event B
has occurred, is equal to

P(A|B) =
P(A ∩ B)

P(B)

Example
Suppose that a fair die is tossed once. Find the probability of
a 1 (event A), given an odd number was obtained (event B).

P(A|B) =
P(A ∩ B)

P(B)
=

1/6

1/2
=

1

3

Restrict the sample space on the event B
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Theorem

Assume that {B1,B2, . . . ,Bk} is a partition of S such that
P(Bi ) > 0, for i = 1, 2, . . . , k. Then

P(A) =
k∑

i=1

P(A|Bi )P(Bi ). A ∩B1

A ∩B2

A ∩B3

B1
B2

B3

S

Note that {B1,B2, . . . ,Bk} is a partition of S if
1 S = B1 ∪ B2 ∪ . . . ∪ Bk

2 Bi ∩ Bj = ∅ for i 6= j
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Bayes’ Rule

Bayes’ Rule

Assume that {B1,B2, . . . ,Bk} is a partition of S such that
P(Bi ) > 0, for i = 1, 2, . . . , k. Then

P(Bj |A) =
P(A|Bj)P(Bj)
k∑

i=1
P(A|Bi )P(Bi )

.
A ∩B1

A ∩B2

A ∩B3

B1
B2

B3

S
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Expected Value

Definition

If X is a discrete random variable and P(X = x) is the value of its
probability distribution at x , the expected value of X is

µ = E (X ) =
∑
x

x · P(X = x).

Correspondingly, if X is a continuous random variable and f (x) is
the value of its probability density at x , the expected value of X is

E (X ) =

∫ ∞
−∞

x · f (x)dx .

E (aX + bY ) = aE (X ) + bE (Y ), linear operator
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Variance
Measures of how far a set of numbers are spread out

Definition

If X is a discrete random variable and P(X = x) is the value of its
probability distribution at x , the expected value of X is

Var(X ) = E ([X − E (X )]2) =
∑
x

(x − µ)2 · P(X = x).

Correspondingly, if X is a continuous random variable and f (x) is
the value of its probability density at x , the expected value of X is

Var(X ) =

∫ ∞
−∞

(x − µ)2 · f (x)dx .

Var(X ) = E (X 2)− (E (X ))2

12 / 21



Probability and Statistics Probability and Inference

Bernoulli Distribution

A trial is performed whose outcome is either a “success” or a
“failure”. The random variable X is a 0/1 indicator variable and
takes the value 1 for a success outcome and is 0 otherwise. p is
the probability that the result of trail is a success. Then

P(X = 1) = p and P(X = 0) = 1− p

which can equivalently be written as

P(X = i) = pi (1− p)1−i , i = 0, 1

Tossing a fair coin, the parameter p = 0.5. If X is Bernoulli,

1 E (X ) = p,

2 Var(X ) = p(1− p)

3 Who knows p?
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Probability and Inference

The outcome of tossing a coin is {Heads,Tails}
We use a random variable X ∈ {0, 1} to indicate the outcome

Suppose that we have a random sample: X = {x t}Nt=1

How to estimate the parameter p?

14 / 21



Probability and Statistics Probability and Inference

Maximum Likelihood Estimation

Likelihood Function

The probability to observe the random sample X = {x t}Nt=1 is

N∏
t=1

px
t
(1− p)1−x

t

Why don’t we choose the parameter p which will maximize the
probability for observing the random sample X = {x t}Nt=1?

Based on MLE, we will choose the parameter p

p =

∑N
t=1 x

t

N
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Sample Mean, Variance, and Standard deviation

Sample Mean

The mean of a sample of n measured responses y1, y2, . . . , yn is
given by

ȳ =
1

n

n∑
i=1

yi .

The corresponding population mean is denoted by µ.

Sample Variance

The variance of a sample of measurements y1, y2, . . . , yn is given by

s2 =
1

n − 1

n∑
i=1

(yi − ȳ)2.

The corresponding population variance is denoted by σ2.
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Applying Baye’s Rule to Classification

Credit Cards Scoring: Low-risk vs. High-risk

According to the past transactions, some customers are
low-risk in that they paid back their loan and the bank
profited from them and other customers are high-risk in that
they defaulted.

We would like to learn the class “high-risk customer”

We observe customer’s yearly income and savings, which we
represent by two random variables X1 and X2

The credibility of a customer is denoted by a Bernoulli
random variable C where C = 1 indicates a high-risk
customer and C = 0 indicated a low-risk customer
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Applying Baye’s Rule to Classification

How to make the decision when a new application arrives?

When a new application arrives with X1 = x1 and X2 = x2
If we know the probability of C conditioned on the
observation X = [x1, x2] our decision will be

C = 1 if P(C = 1|[x1, x2]) > 0.5
C = 0 otherwise

The probability of error we made based on this rule is

1−max{P(C = 1|[x1, x2]),P(C = 0|[x1, x2])} < 0.5

Please note P(C = 1|[x1, x2]) + P(C = 0|[x1, x2]) = 1
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The Posterior Probability :P(C |x) = P(C )P(x|C )
P(x)

P(C = 1) is called the prior probability that C = 1

In our example, it corresponds to a probability that a
customer is high-risk, regardless of the x value.

It is called the prior probability because it is the knowledge we
have before looking at the observation x

P(x|C ) is called the class likelihood and is the conditional
probability that an event belonging to the class C has the
associated observation value x

P(x), the evidence is the probability that an observation x to
be seen, regardless of whether it is a positive or negative
example

All above information can be extracted from the past transactions
(historical data)
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The Posterior Probability :P(C |x) = P(C )P(x|C )
P(x)

Because of normalization by the evidence, the posteriors sum
up to 1

In our example, P(X1,X2) is called the joined probability of
two random variables X1 and X2

Under the assumption, these two random variables X1 and X2

are probability independent, we have
P(X1,X2) = P(X1)P(X2)

It is one of key assumptions of Naive Bayes’ Classifier

Although it is over simplified the problem it is very easy to
use for real applications
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Extend to Multi-class classification

We have K mutually and exhaustive classes;
Ci , i = 1, 2, . . . ,K

For example, in optical digit recognition, the input is a bitmap
image and there are 10 classes

We can think of that these K classes define a partition of the
input space

Please refer to the slides of the Partition Theorem and Baye’s
Rule

The Bayes’ classifier choose the class with the highest
posterior probability; that is we choose Ci if

P(Ci |x) = max
k

P(Ck |x)

Question: Is it very important to have P(x), the evidence?
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